
Introduction

Package content is intended to get an USB Pendrive/Flash Stick bootable either as ZIP/LS120 (Super-Floppy) Drive

or as Harddisk. GRLDR (Grub4Dos) is used as Bootmanager. Unfortunately it is not foreseeable, how BIOS

categorizes the USB stick or better, what criteria it uses to fix its categorie. So the package additionally contains some

customizable tools to find out, what BIOS thinks. You further need an appropriate HexEditor, which may directly read

(and write to) storage media. It would be great, if you were familiar with "debug" (or a better Assembler program) and

X86-Assembler-Language. You find appropriate information and download links in Appendix.

Content of ZIP-Package

MBR-SPY.REC, FLOPPY.PBR , MINI.MBR , G4D_FAT32.PBR, MENU.LST and this Manual

Table of Content

1. MBR-SPY.REC

2. FLOPPY.PBR

3. MINI.MBR

4. G4D_FAT32.PBR

5. MENU.LST

6. Appendix

1. MBR-SPY.REC

You need a HexEditor (see Appendix) to handle this file. It contains X86 Machine code, which shows the values of

(real mode 16 bit) Processor Registers and has a free area, where you may place your own test code. I strongly

suggest, that you backup the existing MBR just by copying it to the next sector before you change anything at the first

sector. With a simple relative "call 024D" (includes "debug" offset 100h; with offset 0 it is 014D) you launch the

screen output within your code. You need to be familiar with X86 Assembler for coding . MBR-SPY.REC has a size of

440 Bytes, i.e. it doesn't overwrite Disk Signature and Partition table, if copied to the first Byte of Sector 1 (LBA 0; HxD

counts from 0). If your aim is to reveal ZIP/LS120 booting, it could make sense to erase Disk signature and Partition

table, but not "Boot magic" (55AA, last two Bytes of sector, which is number AA55h /Little Endian).

It is strongly recommended, that you shutdown your system (power off NOT hibernation) and look into BIOS

(boot sequence) at startup, before you try a changed MBR. A "warm" reboot may NOT recognize the changes

you made or your USB Stick may get ignored.

Display routine waits for a key after each call. It returns to BIOS at last, and BIOS boots the next device in Boot

sequence. So you should not have a crash, unless you coded nonsense. Keep in mind, that this sector works at RAM

address 0000:7C00, while booting... and it's NOT moved. You should prefer relative addressing, whenever it's

possible. Further note, that "debug" starts at byte 0100h, NOT 0000h (0100h -> 7C00h). If you want to load a disk

sector to RAM, use 0000:7E00 as target buffer - the next free RAM space in same segment. "debug" doesn't know all

16 bit real mode Assembler mnemonics; a short table of X86 mnemonics is downloadable, see Appendix. So

disassembled code might look "queer" sometimes - as do "disassembled" strings (have a look at the dump screen !)

or truncated Multi-Byte-Commands.

Image 1: MBR_SPY.REC

Custom code area reaches from Byte 165h to Byte 1B4h (80 Bytes; pretty much for Machine code).

The present code calls three times Interrupt 13h and gives three (even four with the initial) screen

outputs ! Unused Bytes should be set to 90h (NOP), since last three Bytes (5Ch CDh 18h) are

essential code, too. Area within bluish margin may be erased (set to 00h; Disk Signature and

Partition table) or overwritten by code. Then you have to put the above mentioned three last Bytes

at the end of your code (POP SP, INT 18). But this might not be a good idea, because BIOS might

take values other than 00h as Partition data. "Boot magic"(55AA) should be left untouched.

What does the sample code do ?

0000:7C65 52 PUSH DX Put DX value on Stack; DL=00h→Floppy
or 80h→Harddisk; given by BIOS)

0000:7C66 B80008 MOV AX,0800 Function AH=08h (Query geometry of
Boot medium from BIOS)

0000:7C69 CD13 INT 13 Call Interrupt 13h (Disk services)
0000:7C6B 5A POP DX Restore DX from Stack
0000:7C6C 81E13F00 AND CX,003F Filter lower 6 bits of CX: Sect./track
0000:7C70 E8DAFF CALL 024D Show Register content (Look at CX !)

0000:7C73 B80015 MOV AX,1500 AH=15h (Query drive type)
0000:7C76 31DB XOR BX,BX BX → 0000h
0000:7C78 31C9 XOR CX,CX CX → 0000h
0000:7C7A CD13 INT 13 result in AH:02h→removable;03h→fixed
0000:7C7C E8CEFF CALL 024D Show Register content (Look at AX,left Byte)
0000:7C7F BA8000 MOV DX,0080 DL=80h (fixed disk)
0000:7C82 B80015 MOV AX,1500 same procedure as above; might be

identical, if DL had this value before
0000:7C85 31DB XOR BX,BX
0000:7C87 31C9 XOR CX,CX
0000:7C89 CD13 INT 13
0000:7C8B E8BFFF CALL 024D Show Register content (Look at AX)
0000:7C8E 90 NOP Do nothing, but go on

MBR-SPY first shows Register content before any code is executed, so that you instantly see, what value DX got by

BIOS (the lower Byte DL is significant). This matches (or should, due to the specifications) of course the BIOS

assignment, which you see, when you change Boot sequence in BIOS. Keep in mind, that you may find your USB

pendrive as removable device or as harddisk. Sometimes you see a little +sign at the appropriate menu item as

indicator, that there is more than one choice. Sometimes you have to enable USB at boot time by a separate menu

item („USB legacy support enabled“), or your BIOS offers USB 2.0 support at boot (enable it !). Unfortunately most

BIOSes use USB 1.1, which is ssslllooowww(12 Mbit/s→1.5MB/s).

If you intend to get your USB stick booting as a ZIP/LS120 drive, although it is able to boot as HDD, you have to play

around with criteria, that your BIOS might use to determine its type.

1. Use a (nowadays) small stick (512 MB→1GB)

2. Play with geometry (LS 120 : C/H/S 963/8/32 120MB; ZIP : C/H/S 96/64/32 100MB or 239/64/32 250MB)

3. Use fourth primary partition and PBR at sector 20h(32); do not use more than one partition.

4. Use a PBR at sector 0 (CHS: 1) : sticks are often “shipped” this style, but NOT bootable.

5. Use one or more (up to three; at sector 0, 32 and 63) combined MBR/PBR(Grub4 Dos)

6. Do NOT use Windows MBRs. They are NOT bootable as Floppy.

I see one advantage of a bootable Superfloppy style pendrive : harddisk drive index gets NOT shifted. Your built-in

bootable harddisk stays drive 80h (in real mode).

2. FLOPPY.PBR

FLOPPY.PBR is a simple non-bootable 1,44MB-Floppy Boot Record, which throws a message, when booted, waits

for a pressed key and lets BIOS boot the next device in Boot sequence. Of course, you can use it as such. In this

context, it serves as „verbose“ PBR. You may append the sector number, where you gonna put it, to the text string

(NULL-Byte 00h means „end of string“,so don't use it inside) and get the information, which one is really used. Put

one to sector 32 (20h) and the other to 63 (3Fh). Vista uses 2048 (800h), but you don't consider to launch Vista on a

ZIP style USB Pendrive, do you (Vista PE works !)?

3. MINI.MBR

What does it do (not very much !) ?

1. It gets loaded and started by the BIOS at RAM location 0000:7C00h.

2. It moves the code (except for the moving routine) to 0000:061Bh.

3. It shows a busy message : „Booting USB Pendrive . . .“

4. It looks, whether it was called as Floppy or as Harddisk by the BIOS.

5. As a Floppy, it loads sectors from C/H/S 0/1/1 (hopefully PBR) to 0000:7C00h and jumps to its code.

6. When called as Harddisk, it queries the disk geometry, given by the BIOS and calculates the Sector per Track

value, since PBR is regularly located at the start of the second track. Finally PBR gets loaded to RAM and

takes over.

7. If there is any (disk read) fault, BIOS tries to boot next device in boot sequence.

What are the prerequisites for this minimalist design ?

1. BIOS "tells" MBR, how it boots the involved media: as floppy (DL=00h) or as harddisk (DL=80h).

2. (Super-)Floppy disk read access works through Function AH=02h of Interrupt 13h (CHS based).

3. (Super-)Floppy PBR is at C/H/S = 1/1/0 (to test before with my MBR-SPY and FLOPPY.PBR,

see above)

4. HDD read access works through Function AH=42h of (extended) Interrupt 13h (LBA based).

5. Successful Reading does NOT need more than a single access attempt (not to confuse with multiple

sector reading or multiple access) or a disk reset.

6. BIOS tells correctly, how it sees Disk geometry (CHS based); Sector/track value is used for (LBA)

PBR location of HDD.

7. Partition table is totally ignored by MBR code (Bootflag doesn't matter; any of the primary partitions

is possible).

8. File system of Boot partition is FAT32 (FS-ID 0Bh; for best compatibility and to avoid rapid flash

memory wear out).

9. Modified G4D-FAT32-PBR is used to launch a slightly adapted GRLDR Boot manager

4. Modified G4D_FAT32.PBR

My modifications overwrite the following initial commands with NOPs (90h):

0000:7C5C B6FF MOV DH,FF These commands only make sense, if code is
0000:7C5E 80FEFF CMP DH,FF modified by an external program (MBR?).
0000:7C61 7502 JNZ 0165 Otherwise PBR doesn't boot Harddisks.
0000:7C63 B200 MOV DL,00

PBR holds the Boot Parameter Block (BPB), which is of course dependent on your partitioning data, i.e. you have to

adapt it. I marked the locations for lower (LLLL) partition border and size (SSSS) values in BPB of my PBR. My own

way was simpler. I made a total backup (image) of my 512MB stick, cleared the first 100 sectors by filling them with

00h and let Windows Disk manager create a new first primary partition (size : whole stick). Then I (quick-)formatted it

to FAT32. As expected, PBR was at sector 63 (3Fh). I exchanged MBR code with the help of my HexEditor as well as

PBR code conserving BPB (copying in two parts). The first 11 Bytes are a jump command, a NOP and the string

„GRLDR“ filled up to eight characters by three spaces (20h). Do not accidentally overwrite more Bytes at this location.

The second part starts from Byte 5A (after string „FAT 32“ and three further spaces. Put the whole rest of the code

there. Look, that it ends with 55AA at the sector border.

If you need a PBR at sector 32 (20h) it's NOT more complicated. Just do the same as described above and create all

at sector 63 (3Fh). Label your new created volume (8 characters,upper case), when formatting. Let your HexEditor

search the disk for that label. Copy all from sector 63 to the end of the hexadecimal line, following the label string.

Paste all to the beginning of sector 32. Correct the „Hidden sector“ value at Byte ..1C from 3Fh to 20h, that's all. Run

a „chkdsk“ to be sure it works. Don't forget to open your USB Stick for Writing, otherwise writing item is grayed out.

 5. Modified (GRLDR) internal MENU.LST

You only have to modify GRLDR's internal MENU.LST, if your stick boots as SuperFloppy, because floppies are

ignored when searching for the menu file. Of course, it finds MENU.LST on your HDD (partitions), but this is an

unwanted effect here. We need to have it looking with priority to the SuperFloppy content. So I added one single line

to the internal list (marked fat) :

pxedetect

configfile

default 0

timeout 1

title find /menu.lst, /boot/grub/menu.lst, /grub/menu.lst

errorcheck off

root (fd0,0) || root (hd0,0)

configfile /menu.lst

configfile /boot/grub/menu.lst

configfile /grub/menu.lst

find --set-root --ignore-floppies --ignore-cd /menu.lst && configfile /menu.lst

find --set-root --ignore-floppies --ignore-cd /boot/grub/menu.lst && configfile /boot/grub/menu.lst

find --set-root --ignore-floppies --ignore-cd /grub/menu.lst && configfile /grub/menu.lst

errorcheck on

commandline

title commandline

commandline

title reboot

reboot

title halt

halt

It's easy to exchange with the help of a HexEditor. Do NOT edit my file, because it should have UNIX line endings

(0Ah, instead of 0Dh 0Ah). The internal MENU.LST is at the end of GRLDR file. So load my MENU.LST to the

HexEditor and copy it totally to Clipboard, then load GRLDR, go to the end of the file and (over)write (not paste) my

list exactly where the original list is located. Note, that it has a NULL-Byte (00h) at its end. This is very important as

end marker. Store the changed GRLDR in Root folder of your USB stick (this location is mandatory). And don't forget

to create an individual MENU.LST there as well; not to mention the programs, that have to be put on the stick.

Here is a(n external) MENU.LST sample:

-- snip --

background 3030ff

foreground e0e090

splashimage

clear

timeout 30

default 1

title Start OS on 1st built-in Harddisk\n * Boot, whatever boots on built-in first Harddisk *

root (fd0,0) && chainloader (hd0)+1

root (fd0,0) && boot

map --unhook

map (hd0) (hd1)

map (hd1) (hd0)

map --hook

chainloader (hd0)+1

title W98 EBD Floppy Image\n * Unrestricted Access to MS-DOS interrupts*

map --unhook

root (fd0,0) || root (hd0,0)

map --mem /W98EBD.ima (fd1)

map --hook

map (fd0) (fd1)

map (fd1) (fd0)

map --hook

root (fd0)

chainloader +1

title Puppy Lupu 501\n * All you need in case of Emergency *

root (fd0,0) || root (hd0,0)

kernel /lupu501/vmlinuz live-media-path=lupu501

initrd /lupu501/initrd.gz

title GParted 0.4.5-3test\n * Boot "ISO-Hybrided" ISO-Image as HDD *

map --unhook

root (fd0,0) || find --set-root --ignore-floppies /gparted_iso/gparted-live-0.4.5-3test.iso

map --heads=0 --sectors-per-track=0 /gparted_iso/gparted-live-0.4.5-3test.iso (hd16)

map --hook

root (hd16)

chainloader +1

title Windows Vista Repair

map --unhook

root (fd0,0) || find --set-root --ignore-floppies /VistaRvy.iso

map --heads=0 --sectors-per-track=0 /VistaRvy.iso (hd64)

map --hook

root (hd64)

chainloader /BOOTMGR

title Start GRUB console (type "help"; return with [Esc])

commandline

title Restart\n * Use this to change boot sequence in BIOS *

reboot

title Shutdown\n * Power off system *

halt

-- snap --

6. Appendix

Hints

● Be aware, that you might ruin your system, if you accidentally overwrite sectors on your harddisk. In no way

shall I be made liable for any loss or damage, resulting from using my programs or given advices.

● To be clear : I do NOT expect, that my solution works on ANY USB Stick and on ANY BIOS. I further do NOT

expect that you may configure ANY USB Stick arbitrarily as bootable LS120/ZIP (SuperFloppy) or Harddisk

on the same system (BIOS). My aim was to get as much types of USB Sticks boot at all with Grub4Dos either

way... and to be independent from M$ Boot Records !

● It is possible to partition your HDD-style SuperFloppy, but newer Windows versions show only first partition.

There is a filter driver for Hitachi Microdrives, which enables access to partitions on removable drives.

● MBR-SPY does NOT actualize SP Register value as well as IP value, when called a second and any further

times. Why ? PUSHs and POPs should match, before display routine is called or values might be „mixed up“.

The whole program might crash even. So be careful. SP has to return to its previous value. To get the actual

IP value needs so much code (there is no MOV AX,IP or PUSH IP) and the information is really not needed :

when your code runs, you know what instructions are executed. FG is the Flag Register. Each bit has a

special meaning. The Carry Flag is important for Interrupt 13h. It's the lowest bit, so odd values mean, that

Carry Flag is set (=fault).

● The BIOS suggested logical drive parameters may NOT (and need NOT) correspond to the geometry given

by your partition table as long as the Sector / Track value is identical, or you filled in the appropriate start

sector value manually into the correct location within the Disk Access Packet (DAP) area of my MBR (Byte

68h to 6Fh, Little Endian style). In most cases you only need to change Byte 68h. Be aware, that this

measure has only influence on a HDD booting USB pendrive. Your PBR has to cope with MBR's partition

geometry! It makes no sense to waste space for a big „Hidden Sector“ area, unless you want to store

something at that location. Partition managers sometimes „align borders to cylinder boundaries“. In worst

case, this means a loss of 8MB disk space at the beginning and maybe at the end of the disk as well.

Between different partitions cylinder alignment makes sense.

● WIN/MSDOS PBRs are NOT bootable with this kind of minimized MBR, because they use drive index from

MBR (Bootflag), exchanged with other stuff via a common stack. My MBR does NOT present these

informations. Win/MSDOS MBR doesn't accept floppy drive indices (the Bootflag is used as drive index to the

boot medium, so always 80h; a floppy has to have no MBR, due to M$).

● You may alter the Boot message of my MBR as long as you leave ONE NULL-Byte at the end (00h), and you

don't overwrite Disk Signature or -- even worse -- the Partition table. There is no code adaptation necessary.

Perhaps you write a Limerick or a love poem for it? Use 0Dh 0Ah for forced Linefeed. Tab (09h) doesn't work.

● I intentionally did NOT put a screenshot of my MBR-SPY here: it's spartan; see it with your own eyes.

● If your system has an internal Floppy drive, don't be upset, if it sounds like a machine gun at (HDD) boot.

MINI.MBR explained
7C00 33C0 XOR AX,AX AX=0000h (One Byte less than mov ax,0000)
7C02 8ED0 MOV SS,AX SS=0000h (Stack Segment)
7C04 BC007C MOV SP,7C00 SP=7C00h; so Stack is at 0000:7C00h
7C07 FB STI Set Interrupts (enabled)
7C08 50 PUSH AX AX=0000h on Stack (SP=7BFE)
7C09 07 POP ES ES=0000h (Extra Segment gets AX value from Stack; SP=7C00h)
7C0A 50 PUSH AX
7C0B 1F POP DS DS=0000h (Data Segment ; Code Segment CS is automatically set

to 0000h). So all segment registers are aligned to 0000h.
7C0C FC CLD Clear Direction Flag (to upwards/increment for MOVSB command)
7C0D BE1B7C MOV SI,7C1B Set register SI=7C1Bh (Source Index; Segment is DS)
7C10 BF1B06 MOV DI,061B Set register DI=061Bh (Destination Index; Segment is ES)+
7C13 50 PUSH AX AX=0000h on Stack
7C14 57 PUSH DI DI=061Bh on Stack (prepares Far Return)
7C15 B9E501 MOV CX,01E5 CX=01E5h (Counter Register; 200h - 1Bh = 1e5h)
7C18 F3 REPZ Repeat following command until CX=0000h (zero), decrement CX
7C19 A4 MOVSB Move Byte from DS:SI to ES:DI, increment both pointers)
7C1A CB RETF Return far to 0000:061Bh (the next command at new location!)
061B E85700 CALL 0674 Call Display Subroutine for a simple Screen Message
061E 08D2 OR DL,DL DL is not changed, but Flags are set : DL=00h Zero-Flag;

DL=01h - 7Fh Sign-Flag +; DL=80h - FFh; Sign-Flag -
0620 7C12 JL 0634 Jump, if DL>7fh->Harddisk
0622 B82002 MOV AX,0220 AH=02h (Read disk function); AL=20h(Read 32 sectors at once)++
0625 BB007C MOV BX,7C00 ES:BX=0000:7C00h (Set Read Buffer Address Pointer)
0628 B601 MOV DH,01 DH=01h (Head number); DL=xxh (Drive index, provided by BIOS)
062A B90100 MOV CX,0001 CX=0001h (Combined Cylinder and Sector Number)
062D CD13 INT 13 Call BIOS Interrupt 13h (Services for Storage Media)
062F 720C JB 063D Jump on below = Jump on carry (Carry-Flag set indicates fault)
0631 0E PUSH CS CS=0000h on Stack
0632 54 PUSH SP SP=7C00h on Stack (Note, that DL still contains Drive index)
0633 CB RETF Return Far (Uses last two Stack Words for jumping to loaded

PBR -->0000:7C00h)
0634 52 PUSH DX DX(DL=80h !) on Stack
0635 B80008 MOV AX,0800 AH=08h (Read Drive Parameters; we only need CX as result)
0638 CD13 INT 13 Call Interrupt 13h
063A 5A POP DX Restore DX from Stack
063B 7302 JNB 063F Jump on no fault over next command
063D CD18 INT 18 Call BIOS Interrupt 18h (= Boot Next Device in Boot sequence)
063F 81E13F00 AND CX,003F Bit manipulation: extract lower 6 Bit of Register CX

= Sect./track value as BIOS sees it; standard location of PBR)
0643 31C0 XOR AX,AX AX=0000h
0645 3B066806 CMP AX,[0668] Compare Content of AX to Word at RAM address DS:0668h (see DAP

below)+++
0649 7504 JNZ 064F Jump on Non Zero directly to Function Extended Read (AH=42h)

This offers to manually set sector value, if BIOS tells
nonsense.

064B 890E6806 MOV [0668],CX Load sect./track value to DAP (Disk Acces Packet Buffer)
064F B442 MOV AH,42 AH=42h (Extended Read Function)
0651 BE6006 MOV SI,0660 Set Pointer to DAP address(DS:SI=0000:0660h)
0654 CD13 INT 13 Call Interrupt 13h (Note, that DL is NOT altered.)
0656 EBD7 JMP 062F Jump back to Carry Test and either proceed to INT 18h (fault)

or jump to just loaded PBR (success)

0658 56 30 2E 31 30 V0.10 Version

065D 2A 44 50 *DP Separator
0660 10 00 20 00 00 7C 00 00-00 00 00 00 00 00 00 00 |.......... DAP
0670 45 4E 44 2A END* Separator

0674 60 PUSHA Put AX CX DX BX (SP) BP SI DI on Stack
0675 EB11 JMP 0688 Common trick to get the address of Message text (Call back to 0677h)
0677 5E POP SI SI points to first character of text
0678 AC LODSB Load Byte at DS:SI to Register AL, increment SI
0679 08C0 OR AL,AL Sets Zero-Flag, if AL=00h(Null-Byte; end of text)
067B 7409 JZ 0686 Jump, if end of text is reached
067D B40E MOV AH,0E AH=0eh (Display one character and move cursor)
067F BB0700 MOV BX,0007 Set Display attributes
0682 CD10 INT 10 Call Interrupt 10h (BIOS Basic Display functions)
0684 EBF2 JMP 0678 Jump to read next character
0686 61 POPA Get DI SI BP BX DX CX AX from Stack (SP restores

automatically)
0687 C3 RET Return to main program; see above
0688 E8ECFF CALL 0677 "Call" puts the IP value of next command on Stack for a return

jump - or better : to get its address in this special case

0680 20 20 42 6F 6F Boo Busy message
0690 74 69 6E 67 20 55 53 42-20 70 65 6E 64 72 69 76 ting USB pendriv
06A0 65 20 2E 20 2E 20 2E 00 e

+) Relocation of code omits of course Relocation Routine itself (Bytes 0000h to 001Ah), which is no
more needed.

++) BIOS puts MBR to RAM address 0000:7C00h, and MBR sets Stack Pointer (SP) to 0000:7C00h
(decrements with every "push"). If you load multiple sectors with ONE BIOS Interrupt 13h call, you
must NOT exceed segment border. So there is a maximum sector number to load at this location :
(10000h - 7c00h) Bytes / 200h Bytes/Sector = 42h (= 66 Sectors or 33,792 Bytes). I used 20h (=
32), since some PBRs use more than 1 sector (not mine). Keep in mind, that this is a physical access
to the storage medium, no logical. Structures have to be contiguous (what they generally are, since
they are NOT Files).

+++)Disk Access Packet structure :
10 00 Number of Bytes, which build the packet (all Little Endian/Intel style ! 0010h=16,

fixed)
20 00 Number of Sectors to read(0020h=32; Maximum 7Fh=127, but only 42h=66 at this

location, see above)
007C
0000 Transfer Buffer address in RAM (0000:7C00h)

0000 You may put an individual start sector number other than 0000h(-> infinite loop)
0000 here. It does NOT get overwritten by the BIOS value!
0000
0000 32-bit address of Start Sector number for read access

Links

BIOS Interrupt 13h

HxD HexEditor Download

Grub4DOS 0.4.4 2009-10-16 ZIP Download

BIOS Boot Specif. V 1.01

BIOS EDD Specif. V 3.0 R 0. 8

X86AssemblerCodeTable.pdf

Assembly Tutorial

http://www.xs4all.nl/~smit/asm01001.htm#index1
http://www.jegerlehner.ch/intel/IntelCodeTable.pdf
http://mbldr.sourceforge.net/specsedd30.pdf
http://mbldr.sourceforge.net/specsedd30.pdf
http://www.scs.stanford.edu/nyu/04fa/lab/specsbbs101.pdf
http://nufans.net/grub4dos/current_release/
http://mh-nexus.de/en/hxd/
http://www.ctyme.com/intr/int-13.htm

